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Abstract. The integrable dispersive long wave equations, especially the higher dimensional
ones, are of current interest in both physics and mathematics. Obtained in this paper, via
a symbolic-computation-based method, are new families of exact solutions to the (2+ 1)-
dimensional integrable dispersive long wave equations. Sample solutions from those families
are presented. Solitary waves are merely a special case in one family.

1. Introduction

The integrable dispersive long wave equations are interesting topics in physics and
mathematics, while the application of symbolic computation to physical and mathematical
sciences appears to have a bright future.

Since the 1960’s, many one-dimensional versions of the dispersive long wave equations
have been proposed to model the water wave propagation in certain infinitely-long channels
of finite constant depth and narrow width. Those equations are found integrable, to have
some soliton solutions and plenty of mathematical properties associated with the infinite-
dimensional completely integrable Hamiltonian systems [1–6]. Lately, improvement has
been made in the stability theory for solitary-wave solutions of model equations for long
waves [7].

Recently, to cover wide channels or open seas, that system has been extended to the
coupled integrable dispersive long wave equations in (2+ 1)-dimensional spaces (thereafter
IDLWE), as a compatibility condition for a weak Lax pair [8],

uty = −ηxx − 1
2(u2)xy (1)

ηt = −(uη + u + uxy)x (2)

whereη(x, y, t) represents the amplitude of a surface wave, which propagates in the(x, y)

plane, with its horizontal velocity asu(x, y, t). A relevant Kac–Moody–Virasoro symmetry
algebra has been studied [9], followed by a set of generalized symmetries constituting an
infintely-dimensional Lie algebra [10]. It is interesting to note that the IDLWE has no
Painlev́e property [11] even if it is integrable [8].

In this paper, we use a symbolic-computation-based method to obtain new families of
exact solutions to the IDLWE, and to give examples from those families.

§ Mailing address (correspondence to Yi-Tian Gao).
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2. Leading to the format

The following essential ideas of two direct methods are important: (1) the Hirota’s
dependent variable transformation introduces, to begin with, a dependent variablez(x, t)

with a differentiator acting on its functionw[z(x, t)] = ln z(x, t); (2) the Clarkson–Kruskal
approach considers a general functionF {x, t, w[z(x, t)]} and tries to establish an ordinary
differential equation (ODE) forw(z) so as to impose conditions uponF and z. For a
review, see [12–14].

Enlightened by those ideas, we consider the following generic transformations for a set
of coupled partial differential equations (PDEs):{

u(x, y, t) = �(∂t , ∂x, ∂y){w[z(x, y, t)]}
η(x, y, t) = ϒ(∂t , ∂x, ∂y){w[z(x, y, t)]} (3)

where� and ϒ are a couple of operators to be determined, andz(x, y, t) is a dependent
variable also to be determined. Then, we try to substitute equations (3) back into the original
PDEs, in order to obtain a set of coupled ODEs forw(z) and the conditions upon�, ϒ

andz(x, y, t). A more powerful alternative is to determine, first and foremost, some of�,
ϒ andz, which would reduce the amount of computations quite a lot.

It is well known that the condition for the soliton-like solutions to occur is that the
effects of different mechanisms that act to change wave forms, i.e. dispersion, dissipation
and nonlinearity, either separately or in various combinations, are able to exactly balance
out ([15–18] for a general review).

To get the expression for� first, we consider the leading-order conjecture that
the balancing act concentrates on the terms with the highest powers of the differential
coefficients ofz(x, y, t) (to be seen in the forthcoming analysis), which seem to dominate
the aforementioned effects. For equations (1) and (2), we assume that equations (3) have a
special format,{

u(x, y, t) = A∂m
x ∂n

y w[z(x, y, t)] + B

η(x, y, t) = C∂j
x ∂l

yw[z(x, y, t)] + D
(4)

where the constantsA, B, C and D, as well as the integersj , l, m and n, are to be
determined later.

The leading-order analysis is performed as follows. For equation (1), the (possible)
highest-power terms arezj+2

x zl
y andz2m+1

x z2n+1
y , which are, respectively, contributed byηxx

and(u2)xy . No term with so high a power is seen fromuty . Then, the balancing act requires
that those two terms have the same power, i.e.j = 2m − 1 andl = 2n + 1. Similarly, for
equation (2), the (possible) highest-power terms arez

m+j+1
x zn+l

y andzm+2
x zn+1

y , contributed
by (uη)x anduxxy , yielding j = 1 andl = 1. No term with so high a power is seen from
eitherηt or ux . Therefore, we conclude the analysis withj = l = m = 1 andn = 0, so as
to get {

u(x, y, t) = A∂xw[z(x, y, t)] + B

η(x, y, t) = C∂x∂yw[z(x, y, t)] + D.
(5)

That format has been briefly mentioned in [19, 20], and extensively investigated here so as
to allow us to find out the conditions imposed uponz(x, y, t), along with the determination
of the w(z)’s coupled ODEs.
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3. The treatment of w(z) and z(x, y, t)

With the aid of MATHEMATICA, equations (1) and (2) become the set of

Aw′′′ztzyzx + Aw′′zyt zx + ABw′′′zyz
2
x + A2(w′′)2zyz

3
x + A2w′w′′′zyz

3
x

+Cw(4)zyz
3
x + Aw′′zyzxt + Aw′′ztzxy + 2ABw′′zxzxy + 3A2w′w′′z2

xzxy

+3Cw′′′z2
xzxy + Aw′zxyt + ABw′′zyzxx + 2A2w′w′′zyzxzxx

+3Cw′′′zyzxzxx + A2(w′)2zxyzxx + 3Cw′′zxyzxx + ABw′zxxy

+A2(w′)2zxzxxy + 3Cw′′zxzxxy + Cw′′zyzxxx + Cw′zxxxy = 0 (6)

Cw′′′ztzyzx + Cw′′zyt zx + Aw′′z2
x + ADw′′z2

x + BCw′′′zyz
2
x + AC(w′′)2zyz

3
x

+ACw′w′′′zyz
3
x + Aw(4)zyz

3
x + Cw′′zyzxt + Cw′′ztzxy

+2BCw′′zxzxy3ACw′w′′z2
xzxy + 3Aw′′′z2

xzxy + Cw′zxyt

+Aw′zxx + ADw′zxx + BCw′′zyzxx + 2ACw′w′′zyzxzxx + 3Aw′′′zyzxzxx

+AC(w′)2zxyzxx + 3Aw′′zxyzxx + BCw′zxxy + AC(w′)2zxzxxy

+3Aw′′zxzxxy + Aw′′zyzxxx + Aw′zxxxy = 0 (7)

where the prime notation represents the differentiation with respect toz. We equate to zero
the terms with the highest power of the differential coefficients ofz(x, y, t), i.e. thez3

xzy

terms, so as to get

A2(w′′)2 + A2w′w′′′ + Cw(4) = 0 and C(w′′)2 + Cw′w′′′ + w(4) = 0. (8)

This is the coupled ODE system we are looking for, of which a special solution is of the
form

w(z) = k · ln(z) (9)

with the constants calculated as

k = 2

C
and A = ±C. (10)

It is noted that if one neglects the zero and linear solutions of equations (8) then, if (8) have
a solution, it is necessary thatA = ±C.

Having seen the expression forw(z), we investigatez(x, y, t). The equation splitting
[21] is applied to the remainders of equations (6) and (7), with their simplest parts, or the
w′ terms, vanishing, i.e.

Azxyt + ABzxxy + Czxxxy = 0 (11)

Czxyt + Azxx + ADzxx + BCzxxy + Azxxxy = 0. (12)

With the choices of

B = 0 D = −1 and A = C (13)

one can see that the simple trial solution for equations (11) and (12),

z(x, y, t) = 1 + exp(α · x + β · y + γ · t + δ) (14)

would lead to nothing but solitary waves, whereα, β, γ andδ are constants.
Nevertheless, this clue inspires one to proceed further. More sophisticated than solitary

waves, the followingx-linear form under constraints (13),

z(x, y, t) = 6(y, t) + exp[2(y, t) · x + 9(y, t)] (15)

is now imposeda priori for the search of particular solutions to system (1)–(2), where
6(y, t), 2(y, t) and 9(y, t) are differentiable functions ofy and t only. In other words,
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we proceed directly by assuming a solution to equations (1) and (2) of the form given by
equations (5), (9), (10) and (13) withz given by equation (15). However, equations (11)
and (12) will be ignored, as they become unuseful in the forthcoming analysis.

4. A formalism of solutions for the IDLWE

After the substitution of equations (5), (9), (10), (13) and (15) with symbolic computation,
we find that equations (1) and (2) give rise to the same large equation as follows:

3e2x+92262y − e2x+9x2362y + 322622y + x23622y + 2e2x+9x62t2y

−e2x+9x2262t2y + 2x622t2y + x22622t2y + e2x+969t2y

−e2x+9x269t2y + 629t2y + x2629t2y − e2x+96t2y

+e2x+9x26t2y − 66t2y − x266t2y − e2x+92369y + 23629y

+e2x+962t9y − e2x+9x262t9y + 622t9y + x2622t9y

−e2x+9269t9y + 2629t9y + e2x+926t9y − 266t9y

+e2x+9236y − 2366y − e2x+92t6y + e2x+9x22t6y − 62t6y

−x262t6y + e2x+929t6y − 269t6y + 226t6y + (e2x+9)22yt

+2e2x+962yt + 622yt + e2x+9x62yt + x2622yt + e2x+9269yt

+2629yt − e2x+926yt − 266yt = 0. (16)

This equation is going to be satisfied if the terms with e2x+9x2, e2x+9x, (e2x+9)2, e2x+9 ,
x2, x andx0 are assumed to vanish separately. Correspondingly, equation (16) becomes a
set of constraints, after some algebraic manipulations and reductions:

2t2y = 0 (so that2yt = 0 is also satisfied)

−2262y − 69t2y + 6t2y − 62t9y + 2t6y = 0

−22629y − 629t9y + 66t9y + 2266y + 69t6y − 6t6y = 0

22622y + 6t6y + 629yt − 66yt = 0.

(17)

To this stage, we are able to present the formalism of new solutions for equations (1)
and (2) as follows:

u(x, y, t) = A∂xw[z(x, y, t)] = 2 · 2(y, t) · e2(y,t)·x+9(y,t)

e2(y,t)·x+9(y,t) + 6(y, t)
(18)

η(x, y, t) = A∂x∂yw[z(x, y, t)] − 1 = 2 · 4(x, y, t) · e2(y,t)·x+9(y,t)

[e2(y,t)·x+9(y,t) + 6(y, t)]2
− 1 (19)

where the differentiable functions6(y, t), 2(y, t), 9(y, t) and their derivatives are mutually
linked through constraints (17), while the last function is defined as

4(x, y, t) = e2(y,t)·x+9(y,t)2y(y, t) + 6(y, t)2y(y, t) + x · 2(y, t)6(y, t)2y(y, t)

+2(y, t)6(y, t)9y(y, t) − 2(y, t)6y(y, t). (20)

The case with6(y, t) = 0 is too simple to be of interest. We will concentrate on the
general case of6(y, t) 6= 0, when the formalism turns out to be

u(x, y, t) = 2(y, t)

{
tanh

[
2(y, t) · x + 9(y, t) − ln 6(y, t)

2

]
+ 1

}
(21)

η(x, y, t) = 4(x, y, t)

2 · 6(y, t)
sech2

[
2(y, t) · x + 9(y, t) − ln 6(y, t)

2

]
− 1. (22)
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The physical interest of such solutions lies in the fact that they describe certainsoliton-like
surface waves, the crests of which acquire shape in the(x, y) plane. The actual form of the
amplitude depends on the choices of4(x, y, t) and 6(y, t), while its horizontal velocity
on 2(y, t). Detailed discussions now follow.

5. Families of solutions to the IDLWE

In order to make2t2y = 0, expressions (21) and (22), along with constraints (17) and
equation (20), lead to three families of exact solutions to equations (1) and (2). They are
separately characterized by2 = constant; 2t = 0 but 2y 6= 0; and2y = 0 with 2t 6= 0.

Family I: 2(y, t) = θ = constant 6= 0

For this family, constraints (17) reduce to{
−θ2629y − 629t9y + 66t9y + θ266y + 69t6y − 6t6y = 0

6t6y + 629yt − 66yt = 0
(23)

and the exact solutions are written as

u(I)(x, y, t) = θ ·
{

tanh

[
θ · x + 9(y, t) − ln 6(y, t)

2

]
+ 1

}
(24)

η(I)(x, y, t) = θ

2
·
[
9y(y, t) − 6y(y, t)

6(y, t)

]
· sech2

[
θ · x + 9(y, t) − ln 6(y, t)

2

]
− 1 (25)

where the differentiable functions6(y, t), 9(y, t) and their derivatives satisfy
constraints (23).

Sample 1.1. We have a choice of

6(y, t) = y (26)

by which the second of equations (23) becomes

9yt = 0 (27)

or

9(y, t) = 0(y) + 8(t) (28)

where0(y) and8(t) are arbitrary, differentiable functions. Substitute expression (28) back
into the first of equations (23), and we find that

9(y, t) = 0(y) − θ2t. (29)

As a result, the first sample of family I turns out to be

u(I)(x, y, t) = θ ·
{

tanh

[
θ · x + 0(y) − θ2t − ln y

2

]
+ 1

}
(30)

η(I)(x, y, t) = θ

2y
· [y0y(y) − 1] · sech2

[
θ · x + 0(y) − θ2t − ln y

2

]
− 1. (31)
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Sample 1.2. Solitary waves.Let us assume that

9(y, t) = ay + bt + c and 6(y, t) = 1 (32)

wherea, b andc are constants. Some of them are arbitrary. Substitute equations (32) back
into equations (23), and we find that

b = −θ2. (33)

Therefore,

u(I)(x, y, t) = θ ·
[

tanh

(
θx + ay − θ2t + c

2

)
+ 1

]
(34)

η(I)(x, y, t) = aθ

2
· sech2

(
θx + ay − θ2t + c

2

)
− 1. (35)

Thus, solitary waves are nothing but a special case of family I.

Family II. 2 = 2(y) only so as to make2y 6= 0 while 2t = 0

This time, constraints (17) reduce to{
−226 − 69t + 6t = 0

62(22)y + 6t6y + 629yt − 66yt = 0
(36)

and we get

u(II)(x, y, t) = 2(y) ·
{

tanh

[
2(y) · x + 9(y, t) − ln 6(y, t)

2

]
+ 1

}
(37)

η(II)(x, y, t) = 1

2 · 6(y, t)
sech2

[
2(y) · x + 9(y, t) − ln 6(y, t)

2

]
·[e2(y)·x+9(y,t)2y(y) + 6(y, t)2y(y) + x · 2(y)6(y, t)2y(y)

+2(y)6(y, t)9y(y, t) − 2(y)6y(y, t)] − 1 (38)

where the differentiable functions2(y), 6(y, t), 9(y, t) and their derivatives satisfy
constraints (36).

Sample 2. We now select

6(y, t) = y · t (39)

and simplify constraints (36) to{
−22t − 9t · t + 1 = 0

(22)y + 9yt = 0.
(40)

It is noted that the integration of the second of equations (40) overy leads to the first of
equations (40). The second time of integration, overt , further leads to the expression

9(y, t) = ln t − 22(y) · t + 8(y) (41)
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so that

u(II)(x, y, t) = 2(y) ·
{

tanh

[
2(y) · x − 22(y) · t + 8(y) − ln y

2

]
+ 1

}
(42)

η(II)(x, y, t) = 1

2y
sech2

[
2(y) · x − 22(y) · t + 8(y) − ln y

2

]
·[e2(y)·x−22(y)·t+8(y)2y(y) − 2(y) + y2y(y) + xy2(y)2y(y)

−2ty22(y)2y(y) + y2(y)8y(y)] − 1 (43)

where8(y) and2(y) are arbitrary, differentiable functions ofy.

Family III. 2 = 2(t) only so as to make

2y = 0 while 2t 6= 0
Constraints (17) reduce to{ −69y + 6y = 0

6t6y + 629yt − 66yt = 0.
(44)

Investigation shows that the first derivative of the first of equations (44) with respect tot

gives rise to the second of equations (44), while its first integration overy yields

6(y, t) = 8(t)e9(y,t) (45)

which leads to the results

u(III)(x, y, t) = 2(t) ·
{

tanh

[
2(t) · x − ln 8(t)

2

]
+ 1

}
(46)

η(III)(x, y, t) = −1 (47)

where2(t) and8(t) are arbitrary, differentiable functions. In this family,u(III) = u(x, t)

is independent ofy, andη(III) is only a constant.

Note. All of our results have been verified with respect to the original IDLWE, i.e.
equations (1) and (2), by virtue of MATHEMATICA. See the appendix.
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Appendix

All the results presented in this paper as claimed, have been verified by the use of
MATHEMATICA. The following is an example.

Sample 1.1, for instance, can be straightforwardly verified with the MATHEMATICA
program below, in whichEqn1VerifyandEqn2Verifyof the command lines In[1] and In[3]
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are the user-defined verification functions for equations (1) and (2), whileu1a andη1a of the
In[4] and In[5] lines represent equations (30) and (31), respectively. The results Out[6] and
Out[8] thus indicate thatu1a andη1a are indeed a set of particular solutions for equations (1)
and (2).

In[1]:=
Eqn1Verify[u_,eta_]:=Simplify[D[u,{t,1},{y,1}]\
+D[eta,{x,2}]+(1/2)*D[(u^2),{x,1},{y,1}]]

In[2]:=
www[u_,eta_]:=Simplify[u*eta+u+D[u,{x,1},{y,1}]]

In[3]:=
Eqn2Verify[u_,eta_]:=Simplify[D[eta,t]+D[www[u,eta],x]]

In[4]:=
u1a=theta*(Tanh[(theta*x+G[y]-theta^2*t-Log[y])/2]+1)

In[5]:=
eta1a=(theta/2/y)*(y*D[G[y],y]-1)*Sech[(\
theta*x+G[y]-theta^2*t-Log[y])/2]^2-1

In[6]:=
Eqn1Verify[u1a,eta1a]

Out[6]=
0

In[7]:=
www[u1a,eta1a]

In[8]:=
Eqn2V[u1a,eta1a]

Out[8]=
0
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